Skip to contents

Eigen vector centrality associates with each node \(v\) the positive value \(e(v)\), such that: \( \sum_{e}^v w(uv) * e(u) = \lambda * e(v) \). Thus, \(e(v)\) is the Perron-Frobenius eigenvector of the adjacency matrix of the tree.

Usage

eigen_centrality(phy, weight = TRUE, scale = FALSE, use_rspectra = FALSE)

Arguments

phy

phylo object or ltable

weight

if TRUE, uses branch lengths.

scale

if TRUE, the Eigenvector is rescaled

use_rspectra

boolean to indicate whether the helping package RSpectra should be used, which is faster, but returns fewer eigen values.

Value

List with the Eigen vector and the leading Eigen value

References

Chindelevitch, Leonid, et al. "Network science inspires novel tree shape statistics." Plos one 16.12 (2021): e0259877.