Maximization of the loglikelihood under the Guilds Model, conditioned on guild size.
maxLikelihood.Guilds.Conditional.Rd
This function computes the maximum likelihood estimates of the parameters of the guilds model, conditioned on guild size.
Arguments
- init_vals
init_vals
corresponds to a vector of parameter values in which to start the Maxmimum Likelihood algorithm, depending on the provided model:
- model: "D0"parameters
= c(theta, alpha)
- model: "D1"parameters
= c(theta, alpha X, alpha Y)- model
The chosen model to calculate the maximum likelihood for, please note that the vector of parameters should contain the corresponding parameters in the right order. The user can pick one of these models:
- "D0"
- "D1"- sadx
The Species Abundance Distribution of guild X
- sady
The Species Abundance Distribution of guild Y
- verbose
TRUE/FALSE flag, indicates whether intermediate output is shown on screen
Value
The output is a list containing the following:
- par
a vector containing the parameter values at the maximum likelihood
- value
the likelihood at the corresponding parameter values
- counts
Number of function evaluations required
- convergence
-2: invalid input
-1: number of maximum function evaluations exceeded
0: success: convergence
1: limit of machine precision reached- message
A character string giving a diagnostic message from the optimizer,
- hessian
Hessian matrix (not implemented for this package)
Examples
theta = 20
alpha = 0.1
initParams <- c(theta, alpha)
maxLikelihood.Guilds.Conditional(initParams,
model = "D0",
sadx = 1:20,
sady = 1:20,
verbose = TRUE)
#> $par
#> [1] 10.5442506 0.1094336
#>
#> $value
#> [1] 49.37634
#>